Dynamic optimization of plant growth

Yoh Iwasa*

Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan

ABSTRACT

The growth and reproductive schedule of terrestrial plants can be usefully studied as the dynamic optimal allocation of material between different organs. This idea, pioneered by Dan Cohen, has been formalized as an optimal control problem and analysed using Pontryagin’s maximum principle or dynamic programming. Here, I review several examples of dynamic resource allocation models. First, the seasonal timing of reproduction of annuals is discussed. This can be extended to plants with multiple vegetative organs and the optimal shoot–root balance is assessed. Secondly, the growth schedule over multiple seasons is examined, and the reproductive effort, the leaf phenology of deciduous perennials, and the conditions under which perenniality is more advantageous than annuality are considered. With some modifications, the same model can handle intermittent reproduction and monocarpic perennials (one large reproduction after many years). Thirdly, growth in an unpredictably fluctuating environment is analysed for the case in which a sudden disturbance (herbivory or fire) removes the photosynthetic system altogether, followed by recovery using stored material, and for the case in which environmental productivity fluctuates in a Markovian process. Finally, the optimal level of chemical defence against herbivory is formalized and used to explain the intensity of alkaloid defence decreasing with leaf age. These examples illustrate the usefulness of dynamic resource allocation models in understanding plant life-history adaptation.

Keywords: defence against herbivory, dynamic programming, growth schedule, life-history strategy, phenology, Pontryagin’s maximum principle, shoot–root balance, stochastic environment.

INTRODUCTION

Every day in a growing season, a plant obtains material by photosynthesis and allocates it to various organs, such as leaves, roots, stems, flowers and fruits. The plant may also invest in storage for the future and defence against fire or herbivory (van der Meijden et al., 1988). Diverse patterns of plant growth and life history are observed in nature, and these are presumably the result of adaptation to each environment. Evolutionary outcome of plant life history can be viewed as the optimal schedule of resource allocation, chosen under physical and informational constraints.
Evolutionary Ecology Research is delighted that you wish to consult one of its articles.

You may if your library or laboratory subscribes.

Ask your librarian or library committee why your place does not already subscribe to the low-cost journal that is publishing splendid science in a socially responsible manner. *EER*’s low prices have helped librarians to rein in the indefensible cost increases that have reduced our access to science all over the world! Just ask our partners at [SPARC](http://sparcus.org) — the Scholarly Publishing & Academic Resources Coalition of the Association of Research Libraries.

Or maybe you should just remind the folks who order your journals to contact us and subscribe! You need — and they should support — the journal that:

- Invented the instant publication of reviewed, revised and accepted e-editions.
- Vests the copyrights of all articles in their authors while preserving the rights of educational and research groups to use its material in classes, seminars, etc. at no additional cost.
- Maintains a unified data-base of articles, thus doing away with your need to worry about issue numbers, author order, and other such impediments to easy access.
- Provides Webglimpse so that you can search any word, place, species, variable, phrase or author in any article *EER* has ever published.
- Pioneered e-only subscriptions while maintaining, at the same time, a traditional print edition, too.

Some 10,000 readers per week have it right. *EER* is the place to go for great science, responsible publication policies and easy access!

[Click here for the Table of Contents](#) of the most recent issue of *Evolutionary Ecology Research*

[Click here for full access to a sample issue](#) of *Evolutionary Ecology Research*

[Click here for SUBSCRIPTION INFORMATION](#)