Evol Ecol Res 4: 1153-1176 (2002)     Full PDF if your library subscribes.

The quantitative assessment of the benefits of physiological integration in clonal plants

Peter Chesson1* and Andrew G. Peterson2

1Section of Evolution and Ecology, University of California, Davis, CA 95616 and 2Columbia University, Biosphere 2 Center, 32540 South Biosphere Road, Oracle, AZ 85623, USA

Author to whom all correspondence should be addressed.
e-mail: plchesson@ucdavis.edu


A genet of a clonal plant often has ramets persistently interconnected by living tissue capable of supporting the exchange of materials. This condition is known as physiological integration. A quantitative framework is developed for the study of the fitness benefits of physiological integration in clonal plants in spatially heterogeneous environments. We argue that the relative growth rate of the genet is a suitable approximate measure of fitness. Fitness benefits of physiological integration are then measured by comparing genet relative growth rates between heterogeneous and homogeneous environmental conditions. Fitness benefit measures are derived for both exponential and non-exponential growth of genet (clonal) fragments and for equilibrium scenarios. For short time-scales and equilibrium scenarios, we show how the fitness benefit (at the level of the genet) can be decomposed into net benefits accruing at the level of the genet fragment, which can then be further analysed in terms of costs and benefits for the parent and offspring sections of a genet fragment. Applying these benefit measures to simple models of clonal plant growth shows that net benefits of physiological integration may disappear with time and become net costs when physiological integration occurs between strictly good and poor environments. Such time dependence is predicted to result from long-term dominance of total genet growth by genet fragments in good environments. Time dependence, however, would not necessarily occur when the various environments are not strictly good or bad but have complementary attributes. Similarly, net benefits would not necessarily be time-dependent under equilibrium growth scenarios. The net benefit measures derived here allow such time dependence to be assessed in an experimental setting. Although the quantitative methods developed here focus specifically on a common experimental design in which genet fragments are divided into sections subject to different environmental conditions, these methods extend to complex scenarios that might be justified by particular circumstances in the field.

Keywords: fitness, non-linear averaging, paired-section experiment, physiological integration, relative growth rate, spatial heterogeneity.

IF you are connected using the IP of a subscribing institution (library, laboratory, etc.)
or through its VPN.


        © 2002 Peter Chesson. All EER articles are copyrighted by their authors. All authors endorse, permit and license Evolutionary Ecology Ltd. to grant its subscribing institutions/libraries the copying privileges specified below without additional consideration or payment to them or to Evolutionary Ecology, Ltd. These endorsements, in writing, are on file in the office of Evolutionary Ecology, Ltd. Consult authors for permission to use any portion of their work in derivative works, compilations or to distribute their work in any commercial manner.

       Subscribing institutions/libraries may grant individuals the privilege of making a single copy of an EER article for non-commercial educational or non-commercial research purposes. Subscribing institutions/libraries may also use articles for non-commercial educational purposes by making any number of copies for course packs or course reserve collections. Subscribing institutions/libraries may also loan single copies of articles to non-commercial libraries for educational purposes.

       All copies of abstracts and articles must preserve their copyright notice without modification.