Disturbance-generated niche-segregation in a structured metapopulation model

Kalle Parvinen\(^1\) and Géza Meszéna\(^2\)

\(^1\)Department of Mathematics, University of Turku, Turku, Finland and
\(^2\)Department of Biological Physics, Eötvös University, Budapest, Hungary

ABSTRACT

Question: Does limiting similarity apply for co-existence maintained by disturbance in a metapopulation?

Methods: In contrast to patch occupancy modelling, we follow both local- and meta-population-scale dynamics explicitly. The theory of structured metapopulations is used for this purpose. Adaptive dynamics is employed to study evolution.

Key assumptions: Local catastrophes at a given rate. Fixed dispersal rate, trade-off between fecundity and local competitiveness.

Results: Co-existence of a few (up to 5) but not more species is observed. They are distinctly different along the trade-off variable and partition the patch-age axis. A series of evolutionary branchings leads to an evolutionarily stable coalition.

Conclusions: The usual niche theoretical picture of decreased competition with increased differentiation applies. The patch age is the proper niche axis. Niche differentiation along this axis is the requirement of co-existence. Constraints of co-existence are overlooked in patch occupancy models.

Keywords: disturbance, diversity, metapopulation, niche.

INTRODUCTION

Maintenance of species diversity via disturbance (Connell, 1978; Huston, 1979, 1994; Hastings, 1980) is a central issue of ecology. In the most commonly considered case, it is assumed that the ability to colonize and/or exploit an empty habitat can be increased at the cost of decreasing local competitiveness. In a constant environment, the better competitors (the ‘\(K\)-strategists’) outcompete the good colonizers/exploiters (the ‘\(r\)-strategists’) in each habitat, so that the latter disappear. If, however, the local sub-populations are destroyed regularly, the \(r\)-strategists may always have the chance to exploit a newly emptied habitat before they are expelled from the previous one. In this way, the long-term co-existence of the \(r\)- and
Evolutionary Ecology Research is delighted that you wish to consult one of its articles.

You may if your library or laboratory subscribes.

Ask your librarian or library committee why your place does not already subscribe to the low-cost journal that is publishing splendid science in a socially responsible manner. EER’s low prices have helped librarians to rein in the indefensible cost increases that have reduced our access to science all over the world! Just ask our partners at SPARC — the Scholarly Publishing & Academic Resources Coalition of the Association of Research Libraries.

Or maybe you should just remind the folks who order your journals to contact us and subscribe! You need — and they should support — the journal that:

- Invented the instant publication of reviewed, revised and accepted e-editions.
- Vests the copyrights of all articles in their authors while preserving the rights of educational and research groups to use its material in classes, seminars, etc. at no additional cost.
- Maintains a unified data-base of articles, thus doing away with your need to worry about issue numbers, author order, and other such impediments to easy access.
- Provides Webglimpse so that you can search any word, place, species, variable, phrase or author in any article EER has ever published.
- Pioneered e-only subscriptions while maintaining, at the same time, a traditional print edition, too.

Some 10,000 readers per week have it right. EER is the place to go for great science, responsible publication policies and easy access!

Click here for the Table of Contents of the most recent issue of Evolutionary Ecology Research

Click here for full access to a sample issue of Evolutionary Ecology Research

Click here for SUBSCRIPTION INFORMATION