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During the last 600 million years, life has developed an astounding diversity of forms to fill
Earth’s geographical and ecological space. This spectacular variety of living things has risen
and fallen over time, with diversity sometimes shrinking to as little as one-twentieth of its
original level (Sepkoski et al., 1981; Raup, 1991; Jablonski, 2001; Benton and Twitchett, 2003; Alroy, 2008). Yet, even
after the most severe mass extinctions, the rebounds in diversity have been extraordinary
(Jablonski, 2001). Although forms that vanished never came back to life, the ones that replaced
them have shown remarkably similar patterns of diversity and phenotype distributions in
space (Foote, 1997; Erwin, 2001; Wagner, 2010). Thus, the trends studied by macroecologists – general
patterns in species distribution in space (Brown, 1995; Rosenzweig, 1995; Blackburn and Gaston, 2003) – are,
in principle, amenable to palaeobiological testing (Lieberman et al., 2007). In fact, trends such as
Bergmann’s rule, the diversity/latitude relationship, the island rule, and patterns of species
range distributions have been shown to apply to fossil clades (Klein, 1986; Miller, 1997; Crame, 2001;

Jernvall and Fortelius, 2004; Hawkins et al., 2006; Raia and Meiri, 2006; Foote et al., 2007, 2008; Carotenuto et al., 2010, 2015;

Lyons et al., 2010; Polly et al., 2011; Fritz et al., 2013; Jablonski et al., 2013).
Some ‘rules’, however, are specific to fossils, whose bearing on the geography and ecology

of life today is arguably extremely important yet remains to be elucidated (Mittelbach et al.,

2007; Araújo et al., 2008). For instance, taxonomic diversity more often than not achieves a
peak around the middle of the existence of a clade (Foote, 2009). But the relationship between
clade age and diversity is uncertain (Ricklefs, 2007; Rabosky et al., 2012). Thus, testing for differences
in diversity among living clades and trying to distinguish between Raup’s (1981) widely
accepted reasons for a clade to survive – good genes (the phenotype) and bad luck
(accidents of history) – makes little sense except in a temporally resolved context (McPeek and

Brown, 2007).
That is also the kind of context in which the effects of mass extinctions can be explored

properly. For example, some would suggest that the rules of evolution change in the after-
math of a crisis. If that is the case, new groups will emerge after a crisis at a faster pace than
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they otherwise would. Or perhaps diversification events are insensitive to whether or not
ecospace has been cleared catastrophically (Jablonski, 2005; Roopnarine, 2006; Brusatte et al., 2008; Sahney

and Benton, 2008; Wagner, 2010; Ruta et al., 2011). Such questions also touch upon the nature of
adaptive radiations and their influence on the current distribution and species richness
of clades (Rosenzweig and McCord, 1991; Rabosky, 2009; Losos, 2010; Yoder et al., 2010).

Advances in community phylogenetics have provided an array of tools to deepen our
understanding of how modes, trait evolution, and climate history impact the current distri-
bution of species (Cavender-Bares et al., 2009; Kembel, 2009; Ives and Helmus, 2010; Pavoine et al., 2011; Pearse et al.,

2014). Community phylogenetics draws directly on comparative phylogenetics, which pro-
vides a vast and rapidly growing number of methods that rely on phylogenetic trees to
determine the history of clades and traits (Felsenstein, 1985; Harvey and Pagel, 1991; Blomberg and Garland,

2002; Losos and Glor, 2003; O’Meara, 2012).
Yet, none of these methods explicitly takes the history of fossil diversity into account,

nor do they address how diversity interacts with the taxic evolution of clades (Villalobos

et al., 2016). Only very recently have studies sought to use the fossil record directly to model
the evolution of clade diversification, competition among clades, and the influence of
traits on diversification (Hunt, 2007; Hunt et al., 2015; Silvestro et al., 2015). The importance of the
fossil record to the current distribution and diversity of species is now becoming more
widely understood, even in a field as distinct from palaeontology as conservation biology
(Diniz-Filho et al., 2013).

Spatially explicit palaeontological information and methods are thus necessary to help
understand why diversity looks the way it does, or why and how species numbers vary
over space and time. Two issues of Evolutionary Ecology Research are dedicated to the
integration of fossil and neontological information in an attempt to better understand both
species and phenotype diversity in space and time.

In this, the January issue, we look at the path taken by diversity through time. Sahney and
Benton (2017) provide evidence that the rise in generic diversity towards the recent is not an
artefact of improved sampling towards the present (the so-called Pull of the Recent effect).
Castiglione and colleagues (2017) analyse the path taken by diversity in Palaeozoic and
Mesozoic fossil marine clades and find that, in more than 90% of them, the models pro-
ducing the observed diversity patterns include a rapid early diversification phase followed
by steadily rising rates of extinction. Silvestro and associates (2017) provide a novel approach
to the study of the age-old macroevolutionary question of whether clades compete with each
other in time. Polly and colleagues (2017) look at the evolution of cursoriality in American
Carnivora. They find that clade-level trait-based sorting has a strong impact on community-
level trait distributions but population-level selection is either too weak or ineffective
to produce hind limb trait gradients within carnivore species. Finally, Lima-Ribeiro and
Diniz-Filho (2017) find that, contrary to conventional wisdom human over-exploitation (the
overkill hypothesis) is unlikely to explain the end-Pleistocene extinction of the ground sloth
(Megatherium).

The March issue focuses on phenotypic evolution. Maiorino and colleagues (2017) present
an extensive study of cranial shape evolution in ceratopsian dinosaurs. They discover that
cranial shape and angiosperm occurrences are closely related. They also discover a trend for
decreasing shape differentiation in psittacosaurids. Villalobos and colleagues (2017) look at
body size evolution in pterosaurs. They find that these winged ornithodirans did not follow
Bergmann’s rule; during the Cretaceous, pterosaurs even followed the reverse pattern.
Schnitzler and associates (2017) address shape evolution in fossil Musteloidea (the clade
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that includes weasels, martens, and badgers). Their study provides evidence for a trend of
increasing digitigrady in this group – crucially, however, this trend is evident only when
fossil information is included. Finally, Feranec and Pagnac (2017) study the evolution of
molar isotopic composition in Miocene horses. Surprisingly, they find that C4 grasses
occurred in the mid-Miocene in southern California, up to 8 million years before the global
spread of C4 ecosystems.
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